En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
математика
изоморфное подразделение
[ri'fainmənt]
общая лексика
вписанность
измельчение
изящество
очистка
очищение
подразделение
рафинирование
улучшение
усовершенствование
утончение
уточнение
нефтегазовая промышленность
рафинирование, очистка
переработка (нефти)
существительное
общая лексика
утончённость
изысканность
тонкость (вкуса и т. п.)
изящество
часто тонкость
усовершенствование
очищение, рафинирование
обработка, отделка
утонченность, изящество
ироническое выражение
благовоспитанность
(высокая) культура
специальный термин
повышение качества
математика
уточнение (формулы и т. п.)
In numerical analysis, adaptive mesh refinement (AMR) is a method of adapting the accuracy of a solution within certain sensitive or turbulent regions of simulation, dynamically and during the time the solution is being calculated. When solutions are calculated numerically, they are often limited to pre-determined quantified grids as in the Cartesian plane which constitute the computational grid, or 'mesh'. Many problems in numerical analysis, however, do not require a uniform precision in the numerical grids used for graph plotting or computational simulation, and would be better suited if specific areas of graphs which needed precision could be refined in quantification only in the regions requiring the added precision. Adaptive mesh refinement provides such a dynamic programming environment for adapting the precision of the numerical computation based on the requirements of a computation problem in specific areas of multi-dimensional graphs which need precision while leaving the other regions of the multi-dimensional graphs at lower levels of precision and resolution.
This dynamic technique of adapting computation precision to specific requirements has been accredited to Marsha Berger, Joseph Oliger, and Phillip Colella who developed an algorithm for dynamic gridding called local adaptive mesh refinement. The use of AMR has since then proved of broad use and has been used in studying turbulence problems in hydrodynamics as well as in the study of large scale structures in astrophysics as in the Bolshoi Cosmological Simulation.